Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Front Public Health ; 11: 1180279, 2023.
Article in English | MEDLINE | ID: covidwho-20244582

ABSTRACT

Introduction: Vasovagal reactions (VVRs) are common but complex donor adverse reactions (DAEs) in blood donations. VVRs have been extensively studied with a multitude of risk factors identified including young age, female gender and first-time donor status. How they may interplay remains obscure. Methods: A total of 1,984,116 blood donations and 27,952 immediate VVRs (iVVRs) and 1,365 delayed VVRs (dVVRs) reported between 2011 and 2021 in NZ were used in multivariate logistic regression analyses each concerning donations with iVVRs as cases and those free of DAEs as controls. For each analysis stepwise selection was used to identify the best model and risk factors carrying significant main effects and/or interactions. Identified interactions informed further in-depth regression analyses to dissect iVVR risk patterns. Results: Over 95% of VVRs were iVVRs that had lower female preponderance and deferrals than dVVRs. iVVRs had a school seasonal pattern in whole blood donations driven by first-time donors from schools/colleges, and interactions between gender and age group differentiating the first-time from repeat donations. Subsequent regression analyses identified the known and novel risk factors of year and mobile collection sites and their interactions. iVVR rates were roundly elevated in 2020 and 2021 probably because of COVID-19 restrictions like facemask wearing. Exclusion of the 2020 and 2021 data removed the interactions with year, but confirmed interactions of gender with mobile collection sites (p = 6.2e-07) in first-time donations only and with age group in repeat donations only (p < 2.2e-16), together indicating young female donors at the highest risk of iVVRs. Our results also revealed that donation policy changes contributed to the year effects; donors had a lower iVVR risk at mobile sites than well-medicalized donation centers probably because of under-reporting. Conclusion: Modeling statistical interactions is valuable in identifying odds and revealing novel iVVR risk patterns and insights into blood donations.


Subject(s)
Blood Donation , COVID-19 , Female , Humans , COVID-19/epidemiology , Masks , Personal Protective Equipment , Policy
2.
Biosensors (Basel) ; 11(9)2021 Aug 25.
Article in English | MEDLINE | ID: covidwho-2263330

ABSTRACT

The development of reliable and robust diagnostic tests is one of the most efficient methods to limit the spread of coronavirus disease 2019 (COVID-19), which is caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). However, most laboratory diagnostics for COVID-19, such as enzyme-linked immunosorbent assay (ELISA) and reverse transcriptase-polymerase chain reaction (RT-PCR), are expensive, time-consuming, and require highly trained professional operators. On the other hand, the lateral flow immunoassay (LFIA) is a simpler, cheaper device that can be operated by unskilled personnel easily. Unfortunately, the current technique has some limitations, mainly inaccuracy in detection. This review article aims to highlight recent advances in novel lateral flow technologies for detecting SARS-CoV-2 as well as innovative approaches to achieve highly sensitive and specific point-of-care testing. Lastly, we discuss future perspectives on how smartphones and Artificial Intelligence (AI) can be integrated to revolutionize disease detection as well as disease control and surveillance.


Subject(s)
COVID-19 Testing/instrumentation , COVID-19/diagnosis , SARS-CoV-2/isolation & purification , Artificial Intelligence , COVID-19/immunology , COVID-19 Testing/economics , Humans , Immunoassay , Point-of-Care Testing , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Sensitivity and Specificity , Smartphone
3.
J Spec Pediatr Nurs ; 28(1): e12401, 2023 01.
Article in English | MEDLINE | ID: covidwho-2152821

ABSTRACT

PURPOSE: The objective of this study was (1) to examine sleep changes in first graders before and after school closure and (2) to examine the association between parental work rearrangement and children's sleep change during the coronavirus disease 2019 (COVID-19) pandemic. DESIGN AND METHODS: This was an observational study. The children's sleep habit questionnaire was completed by 103 parents of first-graders before and after school closure. Paired t-test and the general linear model were applied to data analysis. RESULTS: Children delayed their bedtime and rising time, but total sleep duration increased. Moreover, parents who rearranged their work during the pandemic perceived more child parasomnia symptoms (p = .029) and less delayed sleep-wake patterns in their children. PRACTICAL IMPLICATION: Sleep is an indicator that reflects children's behavioral changes in response to the COVID-19 pandemic. As routine changes, parents should be aware of child's parasomnia symptoms. Nursing interventions could aim at promoting sufficient external cues in the daytime during home confinement.


Subject(s)
COVID-19 , Parasomnias , Sleep Wake Disorders , Child , Humans , Pandemics , Sleep/physiology , Parents , Schools , Surveys and Questionnaires , Sleep Wake Disorders/epidemiology
4.
Front Pharmacol ; 13: 953438, 2022.
Article in English | MEDLINE | ID: covidwho-2142201

ABSTRACT

Multiple studies show increased severity of SARS-CoV2-infection in patients with comorbidities such as hypertension and diabetes. In this study, we have prepared two herbal-based formulations, a pleiotropic herbal drink (Jin Si Herbal Tea, JHT) and a nasal drop (Jin Si nasal drop, JND), to provide preventive care against SARS-CoV2 infection. The effect of JHT and JND was determined in SARS-CoV2-S-pseudotyped lentivirus-infected bronchial and colorectal cell lines and in SKH-1 mouse models. For preliminary studies, ACE2 receptor abundant bronchial (Calu-3) and colorectal cells (Caco-2) were used to determine the effect of JHT and JND on the host entry of various variants of SARS-CoV2-S-pseudotyped lentivirus. A series of experiments were performed to understand the infection rate in SKH-1 mice (6 weeks old, n = 9), find the effective dosage of JHT and JND, and determine the combination effect of JHT and JND on the entry and adhesion of various variant SARS-CoV2-S-pseudotyped lentiviruses, which included highly transmissible delta and gamma mutants. Furthermore, the effect of combined JHT and JND was determined on diabetes-induced SKH-1 mice against the comorbidity-associated intense viral entry and accumulation. In addition, the effect of combined JHT and JND administration on viral transmission from infected SKH-1 mice to uninfected cage mate mice was determined. The results showed that both JHT and JND were effective in alleviating the viral entry and accumulation in the thorax and the abdominal area. While JHT showed a dose-dependent decrease in the viral load, JND showed early inhibition of viral entry from day 1 of the infection. Combined administration of 48.66 mg of JHT and 20 µL of JND showed rapid reduction in the viral entry and reduced the viral load (97-99%) in the infected mice within 3 days of treatment. Moreover, 16.22 mg of JHT and 20 µL JND reduced the viral infection in STZ-induced diabetic SKH-1 mice. Interestingly, combined JHT and JND also inhibited viral transmission among cage mates. The results, therefore, showed that combined administration of JHT and JND is a novel and an efficient strategy to potentially prevent SARS-CoV2 infection.

5.
Anal Chim Acta ; 1239: 340651, 2023 Jan 25.
Article in English | MEDLINE | ID: covidwho-2122257

ABSTRACT

Epidemiological control and public health monitoring during the outbreaks of infectious viral diseases rely on the ability to detect viral pathogens. Here we demonstrate a rapid, sensitive, and selective nanotechnology-enhanced severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) detection based on the surface-enhanced Raman scattering (SERS) responses from the plasma-engineered, variant-specific antibody-functionalized silver microplasma-engineered nanoassemblies (AgMEN) interacting with the SARS-CoV-2 spike (S) and nucleocapsid (N) proteins. The three-dimensional (3D) porous AgMEN with plasmonic-active nanostructures provide a high sensitivity to virus detection via the remarkable SERS signal collection. Moreover, the variant-specific antibody-functionalization on the SERS-active AgMEN enabled the high selectivity of the SARS-CoV-2 S variants, including wild-type, Alpha, Delta, and Omicron, under the simulated human saliva conditions. The exceptional ultrahigh sensitivity of our SERS biosensor was demonstrated via SARS-CoV-2 S and N proteins at the detection limit of 1 fg mL-1 and 0.1 pg mL-1, respectively. Our work demonstrates a versatile SERS-based detection platform can be applied for the ultrasensitive detection of virus variants, infectious diseases, and cancer biomarkers.


Subject(s)
COVID-19 , Nanostructures , Humans , SARS-CoV-2 , COVID-19/diagnosis , Spectrum Analysis, Raman/methods , Spike Glycoprotein, Coronavirus , Limit of Detection , Nanostructures/chemistry
6.
Anal Chim Acta ; 1230: 340389, 2022 Oct 16.
Article in English | MEDLINE | ID: covidwho-2031061

ABSTRACT

SARS-CoV-2 viruses, responsible for the COVID-19 pandemic, continues to evolve into new mutations, which poses a significant threat to public health. Current testing methods have some limitations, such as long turnaround times, high costs, and professional laboratory requirements. In this report, the novel Spin-Enhanced Lateral Flow Immunoassay (SELFIA) platform and fluorescent nanodiamond (FND) reporter were utilized for the rapid detection of SARS-CoV-2 nucleocapsid and spike antigens from different variants, including wild-type (Wuhan-1), Alpha (B.1.1.7), Delta (B.1.617.2), and Omicron (B.1.1.529). The SARS-CoV-2 antibodies were conjugated with FND via nonspecific binding, enabling the detection of SARS-CoV-2 antigens via both direct and competitive SELFIA format. Direct SELFIA was performed by directly adding the SARS-CoV-2 antibodies-conjugated FND on the antigens-immobilized nitrocellulose (NC) membrane. Conversely, the SARS-CoV-2 antigen-containing sample was first incubated with the antibodies-conjugated FND, and then dropped on the antigen-immobilized NC membrane to carry out the competitive SELFIA. The results suggested that S44F anti-S IgG antibody can be efficiently used for the detection of wild-type, Alpha, Delta, and Omicron variants spike antigens. Findings were comparable in direct SELFIA, competitive SELFIA, and ELISA. A detection limit of 1.94, 0.77, 1.14, 1.91, and 1.68 ng/mL can be achieved for SARS-CoV-2 N protein, wild-type, Alpha, Delta, and Omicron S proteins, respectively, via competitive SELFIA assay. These results suggest that a direct SELFIA assay can be used for antibody/antigen pair screening in diagnosis development, while the competitive SELFIA assay can serve as an accurate quantitative diagnostic tool. The simplicity and rapidity of the SELFIA platform were demonstrated, which can be leveraged in the detection of other infectious diseases in the near future.


Subject(s)
COVID-19 , Nanodiamonds , Antibodies, Viral , COVID-19/diagnosis , Collodion , Humans , Immunoassay/methods , Immunoglobulin G , Pandemics , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
7.
Pharmacol Res ; 184: 106424, 2022 10.
Article in English | MEDLINE | ID: covidwho-2008027

ABSTRACT

The global COVID-19 pandemic remains a critical public health threat, as existing vaccines and drugs appear insufficient to halt the rapid transmission. During an outbreak from May to August 2021 in Taiwan, patients with severe COVID-19 were administered NRICM102, which was a traditional Chinese medicine (TCM) formula developed based on its predecessor NRICM101 approved for treating mild cases. This study aimed to explore the mechanism of NRICM102 in ameliorating severe COVID-19-related embolic and fibrotic pulmonary injury. NRICM102 was found to disrupt spike protein/ACE2 interaction, 3CL protease activity, reduce activation of neutrophils, monocytes and expression of cytokines (TNF-α, IL-1ß, IL-6, IL-8), chemokines (MCP-1, MIP-1, RANTES) and proinflammatory receptor (TLR4). NRICM102 also inhibited the spread of virus and progression to embolic and fibrotic pulmonary injury through reducing prothrombotic (vWF, PAI-1, NET) and fibrotic (c-Kit, SCF) factors, and reducing alveolar type I (AT1) and type II (AT2) cell apoptosis. NRICM102 may exhibit its protective capability via regulation of TLRs, JAK/STAT, PI3K/AKT, and NET signaling pathways. The study demonstrates the ability of NRICM102 to ameliorate severe COVID-19-related embolic and fibrotic pulmonary injury in vitro and in vivo and elucidates the underlying mechanisms.


Subject(s)
COVID-19 Drug Treatment , Lung Injury , Pulmonary Embolism , Angiotensin-Converting Enzyme 2 , Chemokine CCL5 , Cytokines , Fibrosis , Humans , Interleukin-6/metabolism , Interleukin-8 , Lung Injury/drug therapy , Pandemics , Phosphatidylinositol 3-Kinases , Plasminogen Activator Inhibitor 1 , Proto-Oncogene Proteins c-akt , Pulmonary Embolism/drug therapy , Spike Glycoprotein, Coronavirus , Toll-Like Receptor 4/metabolism , Tumor Necrosis Factor-alpha/metabolism , von Willebrand Factor
8.
Journal of International Students ; 12:30-44, 2022.
Article in Chinese | ProQuest Central | ID: covidwho-1999706

ABSTRACT

In this article, we report a survey study involving 582 international students studying at five universities in Shaanxi, China. Adopting a self-developed evaluation questionnaire, the survey explored the participants' perceptions of educational services provided by their host universities during the COVID-19 pandemic. The results revealed medium to low levels of the participants' perceived educational service quality, with the least favorable perceptions to the quality of the "communication with local students and faculty" and effectiveness of "help and support". The research also found that gender, age, current location, scholarship, and length of the study programs in China significantly affected the participants' perceptions of Chinese institutions' educational service quality. Suggestions are proposed to further improve the quality of educational services to better support international students during the pandemic.

9.
Front Public Health ; 10: 926641, 2022.
Article in English | MEDLINE | ID: covidwho-1997485

ABSTRACT

Background: Meteorological factors can affect the emergence of scrub typhus for a period lasting days to weeks after their occurrence. Furthermore, the relationship between meteorological factors and scrub typhus is complicated because of lagged and non-linear patterns. Investigating the lagged correlation patterns between meteorological variables and scrub typhus may promote an understanding of this association and be beneficial for preventing disease outbreaks. Methods: We extracted data on scrub typhus cases in rural areas of Panzhihua in Southwest China every week from 2008 to 2017 from the China Information System for Disease Control and Prevention. The distributed lag non-linear model (DLNM) was used to study the temporal lagged correlation between weekly meteorological factors and weekly scrub typhus. Results: There were obvious lagged associations between some weather factors (rainfall, relative humidity, and air temperature) and scrub typhus with the same overall effect trend, an inverse-U shape; moreover, different meteorological factors had different significant delayed contributions compared with reference values in many cases. In addition, at the same lag time, the relative risk increased with the increase of exposure level for all weather variables when presenting a positive association. Conclusions: The results found that different meteorological factors have different patterns and magnitudes for the lagged correlation between weather factors and scrub typhus. The lag shape and association for meteorological information is applicable for developing an early warning system for scrub typhus.


Subject(s)
Scrub Typhus , China/epidemiology , Humans , Incidence , Meteorological Concepts , Nonlinear Dynamics , Scrub Typhus/epidemiology
10.
Pharmacol Res ; 184: 106412, 2022 10.
Article in English | MEDLINE | ID: covidwho-1996480

ABSTRACT

BACKGROUND: Viral- and host-targeted traditional Chinese medicine (TCM) formulae NRICM101 and NRICM102 were administered to hospitalized patients with COVID-19 during the mid-2021 outbreak in Taiwan. We report the outcomes by measuring the risks of intubation or admission to intensive care unit (ICU) for patients requiring no oxygen support, and death for those requiring oxygen therapy. METHODS: This multicenter retrospective study retrieved data of 840 patients admitted to 9 hospitals between May 1 and July 26, 2021. After propensity score matching, 302 patients (151 received NRICM101 and 151 did not) and 246 patients (123 received NRICM102 and 123 did not) were included in the analysis to assess relative risks. RESULTS: During the 30-day observation period, no endpoint occurred in the patients receiving NRICM101 plus usual care while 14 (9.27%) in the group receiving only usual care were intubated or admitted to ICU. The numbers of deceased patients were 7 (5.69%) in the group receiving NRICM102 plus usual care and 27 (21.95%) in the usual care group. No patients receiving NRICM101 transitioned to a more severe status; NRICM102 users were 74.07% less likely to die than non-users (relative risk= 25.93%, 95% confidence interval 11.73%-57.29%). CONCLUSION: NRICM101 and NRICM102 were significantly associated with a lower risk of intubation/ICU admission or death among patients with mild-to-severe COVID-19. This study provides real-world evidence of adopting broad-spectrum oral therapeutics and shortening the gap between outbreak and effective response. It offers a new vision in our preparation for future pandemics.


Subject(s)
COVID-19 , COVID-19/therapy , Humans , Medicine, Chinese Traditional , Propensity Score , Retrospective Studies , SARS-CoV-2
11.
J Formos Med Assoc ; 121(8): 1425-1430, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1983427

ABSTRACT

BACKGROUND: As a result of the COVID-19 global pandemic, many intellectual property (IP) owners have signed on to the "Open COVID Pledge", an agreement that makes corporate and university IP available free of charge for the purpose of facilitating the development of technologies that will end the pandemic and minimize the impact of disease. Joining this pledge is relatively straightforward for already-disclosed IPs. However, few, if any, has considered how to encourage owners of "non-disclosed patent applications" and "trade secrets" to sign on to this meaningful pledge. In other words, so far there is no proposal to extend the Open COVID Pledge for confidential pending patents and trade secrets. METHODS: We propose an innovative and flexible framework to cover both non-disclosed patent applications and trade secrets to mobilize inventors to participate in the Open COVID Pledge. RESULTS: By focusing on immediate publication of the patent-applying technology and extending provisional right to such applications which is subject to the Open Pledge during this pandemic, our recommendations are workable for inventors who would like to pledge their non-disclosed technologies for the detection, prevention and treatment of the COVID-19, in the meantime preserving their IP rights for the post-pledge period. CONCLUSION: This paper offers a way forward to guide pledgers and implementers who are interested in supporting the effort by addressing some of the issues associated with the free sharing of non-disclosed patent applications and trade secrets in the fight against COVID-19.


Subject(s)
COVID-19 , COVID-19/prevention & control , Humans , Intellectual Property , Technology , Universities
12.
Pharmaceutics ; 14(5)2022 May 13.
Article in English | MEDLINE | ID: covidwho-1896912

ABSTRACT

Smart nanoexosomes are nanosized structures enclosed in lipid bilayers that are structurally similar to the viruses released by a variety of cells, including the cells lining the respiratory system. Of particular importance, the interaction between smart nanoexosomes and viruses can be used to develop antiviral drugs and vaccines. It is possible that nanoexosomes will be utilized and antibodies will be acquired more successfully for the transmission of an immune response if reconvalescent plasma (CP) is used instead of reconvalescent plasma exosomes (CPExo) in this concept. Convalescent plasma contains billions of smart nanoexosomes capable of transporting a variety of molecules, including proteins, lipids, RNA and DNA among other viral infections. Smart nanoexosomes are released from virus-infected cells and play an important role in mediating communication between infected and uninfected cells. Infections use the formation, production and release of smart nanoexosomes to enhance the infection, transmission and intercellular diffusion of viruses. Cell-free smart nanoexosomes produced by mesenchymal stem cells (MSCs) could also be used as cell-free therapies in certain cases. Smart nanoexosomes produced by mesenchymal stem cells can also promote mitochondrial function and heal lung injury. They can reduce cytokine storms and restore the suppression of host antiviral defenses weakened by viral infections. This study examines the benefits of smart nanoexosomes and their roles in viral transmission, infection, treatment, drug delivery and clinical applications. We also explore some potential future applications for smart nanoexosomes in the treatment of viral infections.

13.
Comput Struct Biotechnol J ; 20: 1593-1602, 2022.
Article in English | MEDLINE | ID: covidwho-1757256

ABSTRACT

"Precision medicine" has revolutionized how we respond to diseases by using an individual's genomic data and lifestyle and environment-related information to create an effective personalized treatment. However, issues surrounding regulations, medical insurance payments and the use of patients' medical data, have delayed the development of precision medicine and made it difficult to achieve "true" personalization. We therefore recommend that precision medicine be transformed into precision health: a novel and generalized platform of tools and methods that could prevent, manage, and treat disease at a population level. "Precision health," one of six core strategic industries highlighted in Taiwan's vision for 2030, uses various physiological data, genomic data, and external factors, to develop unique "preventative" solutions or therapeutic strategies. For Taiwan to implement precision health, it has to address three challenges: (1) the high-cost issue of precision health; (2) the harmonization issues surrounding integration and transmission of specimen and data; (3) the legal issue of combining information and communications technology (ICT) with Artificial Intelligence (AI) for medical use. In this paper, we propose an innovative framework with six recommendations for facilitating the development of precision health in Taiwan, including a novel model of precise telemedicine with AI-aided technology. We then describe how these tools can be proactively applied in early response to the COVID-19 crisis. We believe that precision health represents an important shift to more proactive and preventive healthcare that enables people to lead healthier lives.

14.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1122886.v1

ABSTRACT

Background: SARS-CoV-2 is susceptible to frequent mutations and gets transformed into variants therefore identifying novel multi targeting remedies is necessary in formulating strategies to overcome the pandemic. Methods: : Traditional Chinese medicine based formula Jing Si herbal (JSH) was screened and analyzed by HPLC to evaluate its ability to act against infection by SARS-CoV-2 variants. The 3CL protease and RdRp assay kit were utilized to detect the enzyme activity. In order to determine the effect of JSH on the binding efficiency and viral penetration of SARS-CoV-2 variants, Calu-3 lung cells and Caco-2 colon cells were infected with fluorescent SARS-CoV-2 pseudo type lentiviruses. In addition, the effect of JSH (16.22 mg /mice/day and 48.66 mg/mice/day) on the viral load in SKH1J mice exposed to inhalation of luminescent SARS-CoV-2 variants for three days was determined. Results: : The JSH was found to be effective in inhibiting the viral entry into Calu-3 and Caco-2 cells and in mice pre-treated with JSH for 3 days also inhibited the viral load exposed to different SARS-CoV-2 variants. Interestingly, JSH also decreased 3cL and RdRp activity thereby revealing the multi targeting nature of JSH and therefore will be a potential preventive SARS-CoV-2 infection. Conclusion: Taken together, our present results revealed that JSH could be a potential candidate for COVID-19 treatment.


Subject(s)
COVID-19
16.
Sci Rep ; 11(1): 21654, 2021 11 04.
Article in English | MEDLINE | ID: covidwho-1504870

ABSTRACT

To slow the spread of infectious disease, it is crucial to understand the engagement of protective behavior among individuals. The purpose of this study was to systematically examine individuals' protective behaviors and the associated factors across countries during COVID-19. This causal-comparative study used a self-developed online survey to assess individuals' level of engagement with six protective behaviors. Analysis of variance and McNemar's test were employed for data analysis. Three hundred and eighty-four responses were analyzed. The majority of participants lived in three areas: Taiwan, Japan, and North America. Overall, the participants reported a high level of engagement in protective behaviors. However, engagement levels varied according to several demographic variables. Hand hygiene and cleaning/ventilation are two independent behaviors that differ from almost all other protective behaviors. There is a need to target the population at risk, which demonstrates low compliance. Different strategies are needed to promote specific protective behaviors.


Subject(s)
COVID-19/prevention & control , COVID-19/psychology , Risk Reduction Behavior , Adult , Female , Hand Hygiene/trends , Health Behavior , Humans , Male , Middle Aged , Physical Distancing , SARS-CoV-2/pathogenicity , Surveys and Questionnaires
17.
Am J Infect Control ; 49(10): 1252-1255, 2021 10.
Article in English | MEDLINE | ID: covidwho-1308762

ABSTRACT

BACKGROUND: Disinfection of contaminated or potentially contaminated surfaces has become an integral part of the mitigation strategies for controlling coronavirus disease 2019. Whilst a broad range of disinfectants are effective in inactivating severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), application of disinfectants has a low throughput in areas that receive treatments. Disinfection of large surface areas often involves the use of reactive microbiocidal materials, including ultraviolet germicidal irradiation, chlorine dioxide, and hydrogen peroxide vapor. Albeit these methods are highly effective in inactivating SARS-CoV-2, the deployment of these approaches creates unacceptable health hazards and precludes the treatment of occupied indoor spaces using existing disinfection technologies. In this study, the feasibility of using dry hydrogen peroxide (DHP) in inactivating SARS-CoV-2 on contaminated surfaces in large indoor spaces was evaluated. METHODS: Glass slides were inoculated with SARS-CoV-2 and treated with DHP between 5 and 25 ppb for up to 24 hours. Residual infectious virus samples were eluted from three replicates at each time point and titrated in African green monkey VeroE6 cells. RESULTS: In comparison with the observed relatively high stability of SARS-CoV-2 on contaminated glass slides (control group), residual infectious titers of glass slides inoculated with SARS-CoV-2 were significantly reduced after receiving 120 minutes of DHP treatment. CONCLUSIONS: The accelerated decay of SARS-CoV-2 on contaminated glass slides suggests that treatment with DHP can be an effective surface disinfection method for occupied indoor spaces.


Subject(s)
COVID-19 , Disinfectants , Animals , Chlorocebus aethiops , Disinfectants/pharmacology , Disinfection , Humans , Hydrogen Peroxide/pharmacology , SARS-CoV-2
18.
Chin J Nat Med ; 19(6): 473-480, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1258508

ABSTRACT

Huashi Baidu prescription (HSBDF), recommended in the Guideline for the Diagnosis and Treatment of Novel Coronavirus (2019-nCoV) Pneumonia (On Trials, the Seventh Edition), was clinically used to treat severe corona virus disease 2019 (COVID-19) with cough, blood-stained sputum, inhibited defecation, red tongue etc. symptoms. This study was aimed to elucidate and profile the knowledge on its chemical constituents and the potential anti-inflammatory effect in vitro. In the study, the chemical constituents in extract of HSBDF were characterized by UPLC-Q-TOF/MS in both negative and positive modes, and the pro-inflammatory cytokines were measured by enzyme-linked immunosorbent assays (ELISA) to determine the effects of HSBDF in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. The results showed that a total of 217 chemical constituents were tentativedly characterized in HSBDF. Moreover, HSBDF could alleviate the expression levels of IL-6 and TNF-α in the cell models, indicating that the antiviral effects of HSBDF might be associated with regulation of the inflammatory cytokines production in RAW264.7 cells. We hope that the results could be served as the basic data for further study of HSBDF on anti-COVID-19 effect.


Subject(s)
Anti-Inflammatory Agents/chemistry , Antiviral Agents/chemistry , COVID-19 Drug Treatment , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/therapeutic use , Plant Extracts/chemistry , SARS-CoV-2/drug effects , Anti-Inflammatory Agents/therapeutic use , Antiviral Agents/therapeutic use , Humans , Plant Extracts/therapeutic use
19.
Sci Rep ; 11(1): 10795, 2021 05 24.
Article in English | MEDLINE | ID: covidwho-1242043

ABSTRACT

This study aimed to determine COVID-19-related awareness, knowledge, impact and preparedness among elderly Asians; and to evaluate their acceptance towards digital health services amidst the pandemic. 523 participants (177 Malays, 171 Indians, 175 Chinese) were recruited and underwent standardised phone interview during Singapore's lockdown period (07 April till 01 June 2020). Multivariable logistic regression models were performed to evaluate the associations between demographic, socio-economic, lifestyle, and systemic factors, with COVID-19 awareness, knowledge, preparedness, well-being and digital health service acceptance. The average perception score on the seriousness of COVID-19 was 7.6 ± 2.4 (out of 10). 75.5% of participants were aware that COVID-19 carriers can be asymptomatic. Nearly all (≥ 90%) were aware of major prevention methods for COVID-19 (i.e. wearing of mask, social distancing). 66.2% felt prepared for the pandemic, and 86.8% felt confident with government's handling and measures. 78.4% felt their daily routine was impacted. 98.1% reported no prior experience in using digital health services, but 52.2% felt these services would be helpful to reduce non-essential contact. 77.8% were uncomfortable with artificial intelligence software interpreting their medical results. In multivariable analyses, Chinese participants felt less prepared, and more likely felt impacted by COVID-19. Older and lower income participants were less likely to use digital health services. In conclusion, we observed a high level of awareness and knowledge on COVID-19. However, acceptance towards digital health service was low. These findings are valuable for examining the effectiveness of COVID-19 communication in Singapore, and the remaining gaps in digital health adoption among elderly.


Subject(s)
Awareness , COVID-19/pathology , Knowledge , Perception , Telemedicine , Aged , COVID-19/epidemiology , COVID-19/virology , Cross-Sectional Studies , Delivery of Health Care , Ethnicity/psychology , Female , Humans , Interviews as Topic , Male , Middle Aged , SARS-CoV-2/isolation & purification , Singapore/epidemiology , Socioeconomic Factors , Surveys and Questionnaires , Telephone , Urban Population
20.
Front Pharmacol ; 12: 633112, 2021.
Article in English | MEDLINE | ID: covidwho-1218492

ABSTRACT

Hydroxychloroquine (HCQ), which has been proposed as a therapeutic or prophylactic drug for COVID-19, has been administered to thousands of individuals with varying efficacy; however, our understanding of its adverse effects is insufficient. It was reported that HCQ induced psychiatric symptoms in a few patients with autoimmune diseases, but it is still uncertain whether HCQ poses a risk to mental health. Therefore, in this study, we treated healthy mice with two different doses of HCQ that are comparable to clinically administered doses for 7 days. Psychiatric-like behaviors and the expression of related molecules in the brain were evaluated at two time points, i.e., 24 h and 10 days after drug administration. We found that HCQ increased anxiety behavior at both 24 h and 10 days. Furthermore, HCQ decreased the mRNA expression of interleukin-1beta, corticotropin-releasing hormone (Crh), a serotonin transporter (Slc6a4), and a microglia maker (Aif1) in the hippocampus and decreased the mRNA expression of brain-derived neurotrophic factor (Bdnf) in both the hippocampus and amygdala. Lots of these behavioral and molecular changes were sustained beyond 10 days after drug administration, and some of them were dose-dependent. Although this animal study does not prove that HCQ has a similar effect in humans, it indicates that HCQ poses a significant risk to mental health and suggests that further clinical investigation is essential. According to our data, we recommend that HCQ be carefully used as a prophylactic drug in people who are susceptible to mental disorders.

SELECTION OF CITATIONS
SEARCH DETAIL